
1TIC FILE COP)
DRAFT

Ln Requirements For IV&V of the
to NATO Common Ada Programming
r" Support Environment (APSE)
tt Interface Set (CATS) Implementation
N

0Diane E. Mularz
Jonathan D. Wood

Deborah M. Haydon

DTIC October, 1988

SELrED

....D . ,. D p

SPONSOR:
Ada Joint Program Office (AJPO)

Contract No.:
F19628-89-C-0001

V.R~rr~ NA~h' A

App~~107 frPublic releagx

The MITRE Corporation
Washington C31 Operations

7525 Colshire Drive
McLean, Virginia 22102

DRAFT

89 3 01 064

UYUNCLASSIFIED • i r-/ 1
, T CLASSIFICATIONOF THIS PAGE (When Data Entered) ___ _

1. REPORT NUMBER 12. GOVT ACCESSION 40. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubritle) 5. TYPE OF REPORT & PERIOD COVERED'e

Requirements for IV & V of the NATO Common Ada Programming Draft

Support Environment (APSE) Interface Set (CAIS) 6. PERFORMING 0%. REPORT NUMBER
Implementation

7,.AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

ularz, Diane; Wood, Johnathan; Haydon, Deborah F19628089-C-0001

1g. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Mitre Corporation AREA & WORK UNIT NUMBERS

7525 Colshire Dr.
McLean, VA 22102

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPnRT DATE
Ada Joint Proaram Offica Oct 1988
3D139 (1211 S. FERN, C-107) 13. du H Of o UAI

The Pentagon 49
-Washington, D.C. 20301-3081 fferent from Controlling Office) 15. SECURITY CLASS (of this report)

UNCLASSIFIED
Isa. RE,8fFICATION/DOWNGRADING

N/A
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20 If different from Repo.t)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

NATO; APSE; CAIS

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
This report outlines a strategy and specifies the requirements for the development of a

test environment which included: a test administration function that will provide conl rol
over execution of the tests and management of the test results; and a test suite whos
tests will be defined based on the syntax and semantics defined in the Special Workin

Group CAIS specification.

DO 'U"r 1473 EDITION OF I NOV 65 IS OBSOLETE
I ANI i S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICAIION OF THIS PAGE (When Data Entered)

CLEARANCE RE T WR '480B~C R4ELEASE OF DEPARTMENT OF DEFENSE INFORMATION
TO: Asistant Secrerary of Doff nse (Pu. I. Af~airs,'
ATTN: Director, Freedom of Information & 5, curity Review. Rm I&WS. Pentagon

SEE INSTRUCrIONS ON REVERSE
(This form is to be used in requesting review and clearance of DoD information proposed for public release in accordance with DoD 5230 9.)

1. DOCUMENT DESCRIPTION

a- TYPE REPORT b. TITLE Requirements For IV&V of the NATO Common Ada Programming Support
d.Environment (APSE) Interface Set (CAtS) Implementation

c. PAGE COUNT 50Od SUBJECT AREA

a. NAME (Last, First, MO) b. RANK c. TITLE

d. OFFICE e.AGENCY

3 PRESENTATIONIPUBLICATION DATA
Distribution To The General Public.

4. POINT OF CONTACT S. PRIOR COORDINATION

a NAME (Lost. First, MI) a. OFFICE
*CASTOR, Virginia, . 1 11c OSD(AK/ET/AJPO
b. TELEPHONE NUMBER (Include Area Code) b. AGENCY
(202) 694-0210 R8IAT
6. REMARKS

This document has been reviewed within the Ada Joint Program Office. It contains no sensitive or classified information.

7.RE11COMMENDATION OF SUBMITTING OFFICE/AGENCY
a. The attached material has Oepartmen.Office/Agoncy approval for public realease (quahfications if any. are indicated in Remarks Section) and clearance

for open publication is recommended under provisions of DODD 5230.9 1lam authiorized to make this recommendation for release on behalf of:

Di rector. AJPO

b. Clearance is requested by 881121 (YMMDD140).

c. N4AME (Last"Fis, AN) d. TITLE e. SIGNATURE

fOFFICE 9. AGENCY hi. DATE (YYMMDD)

DD11111111II 1910 PREVIOUS EDITION IS OBSOLETE.
Umm

ABSTRACT

A NATO Special Working Group (SWG) on Ada Programming Support Environments
(APSE) was established in October, 1986. Its charter is to develop a tool set that constitutes
an APSE. to evaluate the APSE on both an individual component basis and on a holistic level,
and to define a NATO interface standard for APSEs. A specific task within the associated
MITRE work program is to develop the requirements to perform testing of the Common
APSE Interface Set (CAIS) for the SWG. The SWG CAIS is the agreed upon tool interface set
for the NATO effort, and is a variant of the CAIS standard, DOD-STD-1838. CAIS provides a
standard set of kernel interfaces for APSE tools thus promoting portability of tools across
disparate architectures.

4 The S\\G (\CAIS is complex; there are over .500 unique interfaces defined in 29 Ada
packages with over 1600 possible error conditions. This report outlines a strategy and specifies
the requirements for the development of a test environment which include: a test
adiniistration function that will provide control over execution of the tests and management
of the test results; and a test suite whose tests will be defined based on the syntax and
.Mem:I tiM.ldefined in the SVG CAIS specification. This test suite will focus on nominal
functionality and completeness of critical interfaces. The test environment will be
incrementally developed to correspond to phased deliveries of the SWG CAIS implementations.
There will be two SWG CAIS implementations installed on two different host architectures.
This report outlines the requirements to perform testing on either implementation.,('I

A ceiori For
NTIS CRA&I

1; TiC T4~ II

By.

AvaitaLi'~y Codes

Avar' rtd'orDkit I ,l. eciai

.°Il

DstI

,- *I A -

-C

4

I,

ACKNOWLEDGMENTS

We would like to thank the MITRE peer reviewers for their thorough, conscientious, and
timely critkue of our paper. Much credit is also due to the U.S. Team members and
Evaluation Review Board members who reviewed many preliminary drafts of this paper.

v

'Ii

TABLE OF CONTENTS

Page

LIST OF FIGURES ix

LIST OF TABLES x

EXECUTIVE SUMMARY xi

1.0 Introduction I

1.1 Background 1

1.2 Objectives 3

1.3 Scope 3

1.4 Report Content 4

2.0 SWG CAIS Test Strategy 5

2.1 Informal Design Review 5

2.2 Test Approach 5

2.2.1 Establish a Test Environment 5
2.2.2 Reuse Existing Technology 13
2.2.3 Staged Testing Capability 15

2.3 Review of Installation Guide 15

3.0 Test Environment Requirements 17

3.1 SWG CAIS Test Execution Control Requirements 17

3.1.1 Test Administration 17
3.1.2 Test Configuration Management 17
3.1.3 Test Invocation 17
3.1.4 Run-time Control 18
3.1.5 Implementation Assessment 18
3.1.6 Environment Configuration Assessment 18

vii

TABLE OF CONTENTS (Continued)

Pagc

3.1.7 External Interface Requirements 19

3.1.8 Performance Requirements 19

3.2 Test Suite Requirements 20

3.2.1 Nominal Testing 20
3.2.2 Test, Name Configuration Management 22
3.2.3 Reporting Results 23

3.3 Design Goals 23

3.3.1 Flexibility 23
3.3.2 Extensibility 23
3.3.3 Robustness 24
3.3.4 Portability 24

APPENDIX A: Overview of Verification & Validation Techniques 25

APPENDIX B: Available CAIS Validation Software 33

REFER ENCES 41

GLOSSARY 45

viii

LIST OF FIGURES

Figure Number Page

I Elements of the NATO SWG APSE 2

LIST OF TABLES

Table Number Page

I Scope of SWG CAIS Interface Level Functional Testing 6

2 SWG CAIS Critical Packages/Interfaces 8

3 SWG CAIS Package Dependencies 10

4 SWG CAIS vs. Ada Language Predefined Packages 14

B- I Available CAIS Validation Software 34

x

EXECUTIVE SUMMARY

In October, 1986, nine NATO nations signed a Memorandum of Understanding (MOU)
that established a Special Working Group (SWG) on Ada Programming Support Environments
(A. SE). The SWG's charter is to develop and evaluate a tool set, using an agreed upon
interface set. that standardizes system support to the tools. The SWG agreed upon an
interface set that is based upon the Common APSE Interface Set (CAIS), established as a
)epartment of Defense (DOD) standard in February, 1988 and termed the S\VG CAIS. The
S\\'(; CAIS serves as the portability layer in the APSE by providing a set, of standard kernel
level interfaces to a tool developer thus supporting system level functionality in an abstract,
consistent manner. The United States (U.S.) is providing implementations of these interfaces
nii two diflerent architectures. As a member of the U.S. team supporting the NATO S\\C- on

.\l'.l.,s as sponsored by the Ada Joint Program Office (AJPO), MITRE has responsibility for
the Independentr Verification &. Validation of a S\\G CAIS implementation. This document is
ii1n(dld to be both a plan for the IV&1\V task and a requirements definition for the technology

The S.\V CAIS presents over 500 standard interfaces for use by a tool developer. These
interfaces manipulate an underlying node model that manages relevant objects such as users.
processes. files, and devices. A systematic approach must be defined to provide adequate
testing of these tool interfaces prior to actual tool usage. The scope of the IV,&,V task has been
defined to be an independent testing activity which includes an informal design review to
understand S\VG CAIS implementation features in preparation for test design, development of
it test suite for a critical subset of the SWG CAIS interfaces, and review of the SWG CAIS
Installation Guide through actual utilization and review of the installation procedures.

The test approach prescribed in this document will exercise the SWG CAIS interfaces
using a test suite. The testing will be based on a functional, or "black-box" approach. The
test environment will support the testing of critical tool interfaces, as well as procedures for
providing control over test selection, input data selection, reporting of test results, and
configuration of tests. The-.ritical S\VG CAIS interfaces will be exercised at the nominal level
with initial testing of basic functionality as well as detailed testing which will include testing of
overloaded subprograms, exception handling, adherence to the CAIS pragmatics, and handling
of global exceptions.

This paper provides an overview of the proposed SWG CAIS 1V&V effort. It sets forth
the general framework and establishes technology requirements to support this effort.

xi

1.0 Introduction

This documcnt delines the requirements to support, Independent Verification and
Validation (IV&kV) of the Comhnon APSE Interface Set (CAIS) developed for the Ada Joint
l'rogram Office (A.JPO) in conjunction with the NATO Special Working Group (SWG) on Ada
Programiming 'ulpport Environments (APSE), hereafter referred to as the S\VG CAIS.

1.1 Background

In the early 1970's, the Department of Defense (DOD) determined that the proliferation
ol' computer languages for embedded system software was consuming an increasing portion of
the DoD soft ware ludget. To help address this problem, the Ada language was created and
stilndardiz(,4 iI 1he, earlh" 19 80j. However, it is recognized by DoD, the software engineering
community. and our NATO counterparts that a standardized language alone is insufficient to
a(h'lress futurc largc-s(ile development projects. To ensure the desired improvements in future
software development projects, a language needs to be coupled with quality tools. The means
to plan, analyze, design. code, tvst and integrate such systems on a common set of software is
referred to as a programming support environment.

In October. 1986, nine NATO nations signed a Memorandum of Understanding (MOU)
that established a S\VG on APSEs. This SWG has several goals defined for it: development of
an APSE on two different hosts using an agreed upon interface set; evaluation of the tools and
the interface set a.s individual components; a holistic evaluation of the APSE (i.e, as an
integrated entity rather than ,s individual components); and specification of a NATO interface
standard for APSEs.

A STONEMAN-based APSE consists of a tool set and a system-level interface set. The
interface set provides kernel level functionality in an abstract, consistent manner with specific
system mapping embodied in a particular interface implementation. Use of these interfaces by
a tool developer promotes transportability of APSE tools across disparate architectures.

The NATO S\:G APSE is based upon a STONEMAN model. While the STONEMAN
model assumes that tools will use an interface layer exclusively, the SWG APSE also allows
direct, access to the underlying system, where necessary. Figure I illustrates the NATO APSE
and identifies the NATO participants responsible for the development of each component.
DOD-STD-1838 defines a particular interface set named CAIS. The agreed upon interface set
for the NATO effort is a variant of DOD-STD-1838 named the SWG OAIS. The SWG CAIS
will be developed for two host architectures: DEC VAX/VMS and IBM VM/SP.
Transportability of the NATO APSE will be demonstrated by a rehost of its component tools.

Four working boards were established to effect the SWG goals. Each board has an
individual charter that defines its objectives and its deliverables. These four boards are: the
Tool-, and Integration Review Board (TIRB), the Demonstration Review Board (DRB), the
Interface Review Board (IRB) and the Evaluation Review Board (ERB).

• --. -= == - -= -.. ,,== === m i inlm n~m. rm,=

Figure I1
Elemmt. of the NATO SWG APSE

SPAINCANADA

(-A% aasbrr

CANADA DIrCted 1111 goosp

aOWAN TestITALY

INTERFAME SET NELANDS
(CAIS)

UNITED STATES

2

"T 1e TIB coordinates the development and integration of tie tjols and the S\WG CAIS
within the NATO APSE. Each participant identified in Figure I is tasked with developing
their respective APSE component. Specifically, the U.S. is responsible for implementation of
the SWG CAIS on the two host architectures.

Since embedded systems Sup)ort was a driver in the development of Ada and APSEs, the
NATO project includes in its architecture an MC68020 processor as a target system. The
DRB will emplov the host APSE for development of two weapon system scenarios that are
targeted to the MC68020. This demonstration will be used to evaluate the APSE from a
holistic level.

The IRB is tasked with developing the requirements and specification of an interface
standard for APSEs. To perl'orn this task. the IRB will analyze existing interface standards
such as (AIS. the planned upgrade. CAIS-A, a European standard known as the Portable
Common Tool Environment (PC'TE) and an upgrade called PCTE+. The results of their
analysis will be an interface set specification that would define the recommended set to be used
on future NATO APSEs.

The ERB will develop evaluation technology and will use it to assess the individual
components of the APSE that are developed1 by the TIRB participants. Both the U.S. and the
United Kingdon (UK) have specific tasks within this board. The U.S. is tasked with
perlonrming Independent Verification and Validation (IV V) of the SWG CAIS
implementations as well as their evaluation. The United Kingdom (UK) is responsible for
evaluation of each of the tools within the NATO APSE.

The requirements outlined in this document identify the technology required to support

IV&V of t h S\WG CAIS.

1.2 Objectives

The objective of this task is to define a cost-effective test effort that will nominally test
the SWG CAIS and in so doing. provide a level of confidence to the SWG CAIS users (i.e., tool
developers) that the S\VG CAIS is sufficiently tested prior to tool integration.

1.3 Scope

The scope of this document is limited to defining the requirements for performing IV&V
of the SWG CAIS. The scope of the IV&V task has been defined as an independent testing
activity which includes an informal design review to understand SWG CAIS implementation
features in preparation for test design, development of a test suite for a critical subset of the
SWG CAIS interfaces, and review of the SWG CAIS Installation Guide through actual
utilization of the installation procedures. This document represents the first of a set of
deliverables to the NATO SWG on APSE effort related to this task.

3

1.4 Report Content

This document, describes the requirements to perform testing of the SWG CAIS. The
I)roposed strategy for testing of the SWG CAIS is given in Section 2. Section 3 specifies the
requirements for a test environment that will suplrt the testing of the S\G CAIS
iml)iementation. As background material, an overview of [\&V techniques and their
apI)Ications is provided in Apiendix A. Appendix B provides a tabular listing of all CAIS
validation software that has been previously developed and is available for reuse.

4

2.0 SWG CAIS Test Strategy

The proposed strategy for testing of the SWG CAIS implementations takes into account
current test techniques both in terms of methods and available technology along with
considerations that are unique to the NATO effort.

The test strategy includes an informal design review, development of a test suite for a
critical subset of the SWG CAIS interfaces, and review of the SW\G CAIS Installation Guide.

2.1 Informal Design Review

To better understand the S\VG CAIS implementation architecture and utilize this
understanding in the lesign of more effective tests, the test team will review the S\'G (..Is
imp)lementation design on an informal basis. This review should provide a basis for tairliii
existing tests and developing additional tests. The design information (APSE MOU, NATO
1086) provided will be available for each review.

The user manual (APSE MOU, NATO 1986) provided with each version of the S\VG
CAIS implementation will be examined from the user viewpoint, to determine if the manual
reflects a reasonable user interface and accurately describes user functionality.

2.2 Test Approach

The test approach for the actual testing will e developed for the SWG CAIS
implementation. The test capability will be developed using a functional or black-box
approach to test specification. Tests will be generated based on the specification of the SWG
CAIS and not on the specific structural details unique to a given implementation.

The tests will be run to ensure simple or nominal functionality and completeness of the
interfaces. The intent is to ensure to a tool writer that the expected SWG CAIS operations
are present, and that these operations are syntactically and semantically equivalent to the
SWG CAIS specification.

2.2.1 Establish a Test Environment

A test environment will be set up for the tests. This test environment will consist of a
test suite and a set of manual procedures that will address the execution of Ada software. The
specific requirements for this technology are provided in Section 3. The major components and
rationale for the test environment are provided in the following Sections.

2.2.1.1 Test Suite. The scope of the SWG CAIS test effort currently includes only
those interfaces determined to be critical to NATO tool writers. Table 1 lists the packages
explicitly defined in the current SWG CAIS specification, the number of unique interfaces
associated with each package, and the number of parameters and exceptions associated with
each package. Note that the number of unique exceptions defined for the SWG CAIS is
approximately 39. These can be raised by different interfaces for similar conditions resulting in
over 1600 possible exception conditions.

Table I
Scope of SWG CAIS Interface Level Functional Testing

Reference In Package Interfaces Parameters Posi-
SWG CAIS ble
Specification Excep-

tions
Raised

5.1.1 CAIS.DEFINITIONS 0 0 0
5.1.2 CAISNODE.MANAGEMENT 66 146 277
5.1.3 CAIS-ATTRIBUTLMANAGEMENT 26 73 120
5.1.4 CAIS.ACCESSCONTROLMANAGEMENT 12 27 48
5.1.5 CAI&STRUCTURAL.NODE.MANAGEMENT 4 26 36
5.2.1 CAIS-PROCESS-DEFINITIONS 0 0 0
5.2.2 CAISPROCESS.MANAGEMENT 38 114 166
5.3.1 CAIS.DEVICES 0 0 0
5.3.2 CAISJO..DEFINITIONS 0 0 0
5.3.3 CAIS..OATTRIBUTES 16 16 60
5.3.4 CAIS-DIRECT-iO 16 44 28
5.3.5 CAISSEQUENTIALO 11 34 28
5.3.6 CAISTEXTJO 56 79 28
5.3.7 CAMS-QUEUE..MANAGEMENT 18 141 130
5.3.8 CAIS.SCROLL-TERMINAL-1O 42 58 64
5.3.9 CAI&.AGTERiINALJO 49 73 82
5.3.10 CAISFORMTERMINAL.O 30 45 35
5.3.11 CAIS.MAGNETIC-TAPE-O 19 32 43
5.3.12 CAIS.MPORT-EXPORT 2 12 24
5.3.13 SWG.CAIHOSTTARGETJO 6 10 10
5.4.1 CAIS.LIST.MANAGEMENT 29 55 98
5.4.1.21 CAILSLIST-YTEM 10 33 63
5.4.1.22 CAIS.DENTIFIERITEM 11 31 69
5.4.1.23 CAIS.INTEGER-ITEM 14 31 70
5.4.1.24 CAISFLOAT4TEM 11 31 70
5.4.1.25 CASRING.JTEM 10 30 87
5.5 CAILSTANDARD 0 0 0
5.6 CAISCALENDAR 15 29 5
5.7 CA"PRAGMATICS 0 0 0

Totals ale 1810 An'1

Determining the number of inter a & sWG CAS pape a not alwa m smple 8 wuntng the
procedusl and tntow t n table of costent of DOD-SID,.a For the CAIS 1/0 pack-
ag, some of the interfces re "bosowed" from the Ads Language Referece Manua with both add-
tioand deletm.

6

Since not all of' tie interfaces listed in Table I call be tested within the scope of this
effort, only those SWG CAIS packages determined to be "critical" for the NATO tool writers
will be tested. Critical SW(; CAIS packages were selected based on the perception of
anticipated usage by the tool writers. Ten of twenty-nine SWG CAIS packages were selected
and within these packages the critical interfaces were determined. The five data definition
packages will e tested indirectly through testing of these ten selected SWG CAIS packages.
Table 2 lists the critical SWG CAIS packages and corresponding critical interfaces that, will be
tested.

Packages within the SWG CAIS are hierarchically defined. This means that successful
use of an interface at. one level in the SWC CAIS will in general depend on the successful
execution of other SWVG CAIS packages that it depends upon. Table 3 identifies the package
dependencies. The test suite structure must account for these dependencies.

Given that validation of the SW CAIS is based on a functional approach, the results of
a test can only be analyzed from the inputs and outputs of a test; it cannot make use of any
internal structures or logic of an implementation to evaluate the results. This implies that in
some instances it will be necessary to execute one SNVG CAIS interface to determine the
validity of the output of another interface. For example, a test would be developed to test the
OPEN file interface. To ensure that the OPEN function works correctly, the Boolean function
IS-OPEN could be used. Therefore, the OPEN test depends on successful operation of the
IS-OPEN interface. The order of interface tests therefore becomes an important test
consideration. Lindquist in (Lindquist, 1984), identifies this test issue as a "hidden interface."
Tests will be designed to exercise each interface independently. If there are hidden interfaces.
the dependlent test is performed first. The detailed requirements for this test suite are defined
in Section 3.

2.2.1.2 Test Setup. In addition to the development of the test suite, a test support
capability is needed in this test environment. Procedures to incorporate such a capability will
be developed. These procedures will provide support for setting up the tests, controlling the
execution of a test, determining the order of execution for a test. set, managing the results
generated (luring execution, and providing a user interface for the test environment.
Configuration management techniques will be utilized to control the testing process. As well,
the Ada code will be designed to capture and report test results.

The tests will focus on establishing the existence of the tested SWG CAIS interfaces and
identifying whether the exceptions associated with each interface exist and are correctly
utilized.

The specific requirements for this capability are provided in Section 3.

2.2.1.3 Tester. Some functions that need to be performed for testing will be provided
by a person called a "tester." It will be necessary to have a person perform some manual
functions as a part of a test exercise. These functions include: setup of a testing session,
performance of recovery or restart procedures, performance of interactive tests, review and
interpretation of test results, creation of test reports, resolution of discrepancies between the

7

Ta ble2
SWG CAIS Critical Packages/Interfaces

Cr ttei SWC CAIS Packam Cniaea hmtevfa

CAJS-.NODE-MANAGEMENT DELTLJ40DE
OPEN

OOPY..NODE
CREATLSE0NDARY-RELATIOSHIP
DELET1-SCONDAYJELAIONSHIP
SEr-CURRENT..NODE
GET-.CURRENT..NODE

CAILATRUTE-ANAGEMENT OREAT.NODLARl3UTE
CREATE-PATH-ATRIBUTE
DEETOD.AW3UTE
DELETE-PATK.ATR1UTE
SETNODL.ATRBTE
SET..PATHILTrrRWUTE
GETLNODLATTMIUTE
GET..PATh..ATTRIBUTE

CAlL FRUCTURAL-NODL-MANAOEMENT CREATLNODE

CAUL.PROCESSLMANAGEMENT SPAWN-PROCESS
CREATIJOB
APPEND-RESULTS

GET-RESULTS

GETPARMIETRS
CURRENT-STATUS
OPEN-NOMMJANDLE-OUNT
D1UNMrO0UNT
ABORTPROCESS
DEETJOB

CAIS-.DIRECT.JO CREATE
OPEN

READ
WRITE
SYNCHRONfIZE

CA1SLhdORT...XPOIIT VdORTCTO'flNTS
UPlORTONTENTS

CAMIFORW4AG)1URwNAL, 10 N4/A

T1able2
SWG CAIS Critical Packages/Interfaces (Concluded)

Critical SWG CAIS Packam Criticalonwdame

CAJS.SEQUENTIALJO CREATE
OPEN
CLOSE
RESET
READ
WRITE
SYNCHRONIZE

CA1S.TEXTJ0 CREATE
OPEN
CLOSE
RESET
PUT-LINE
GET-.LINE
SYNCHRONIZE

CAI&LIST..MANAGEMENT SE'L.TO-EMPTYLIST
COPY-.LIST
CONVERT-TEXT-TO-.LIST
SPLICE
CONCATENATE.±IST
EXTRACT-.LIST
REPLACE
INSERT
DELETE
IS.DQUAL
KIND-.OF-.LIST
KIND-OFJITEM
NUMBER-OFJITEMS
GETEJTENAME
POSITON..BY-.NAME
POSITIONS..BY-VALUE
TEXTJFORMt
TEXT.LENGTH
EXTRACT-.VALUE
EXTRACTED-.VALUE
MAKE-THIS.TM-CURRENT
MAKLCONTAININO.LIT-C.URRENT
POMONOF-CURRENT-Larr
CURRENT-LIS-MOVTERMOSTF
CONVERT..TEXT-TOTOKEN
COPY-.TOKEN

Table 8
SWG CAIS Package Dependencies

Package Name Depe dent on Packaze Conta.ins/Ex~grts Package

CAIS-PRAGMATICS N/A None

CAIS-STANDARD CAIS-.PRAGMATICS None

CAJS..LIST...MANAGEMENT CLS-STANDARD CALS-LIST-JTEM
CAIS.RAGMATICS CAIS-JDENTIFIEILITEM

CAISJNTEGERITEM
CAIS..LOATJlTEM
CALU.STRING-JTEM

CAIS-DEFINIT!ONS CAJ&STANDARD None
CAIS.JJIST.-MANAGEMENT

CAIS-CALENDAR CARS.STANDARD None

CAIS...NODE-MANAGEMENT CAISTSANDARD None
CAIS-DEFINITIONS
CAS-.CALENDAR
CALS..LIST-vIANAGEMENT

CAIS..ATTRIBUTE. CALS-STANDARD None
MANAGEMENT

CAIS-DEFIN1IONS
CAS-LIST-MANAGEMENT

CAIS..ACCES&QONTROL- CALI&DEFINITIONS None
MANAGEMENT

CALS.JJIST..MANAGEMENT

CM&SSMUCTURALNODL CAI&EFINITONS None
MANAGEMENT

CALI&ACCESS-CONTROL-
MANAGEMENT
CAIISTJIAANAGEMENT

CA"S.ROCESS..DEFINMTONS CAJS.DEFINITONS None

10

Table 8
SWG CAIS Packaoe Dependencies (Continued)

Package Name Dependent on Package Contais/Exports
____ ___ ____ ___ ____ _ _ ____ ___ ____ ___ ___ Packaze

CAI&..PROCESS..MANAGEMENT CAS.SANDARD None
CAIS.-CALENDAR
CA&SJEFINITIONS
CAIS-.LIST...MANAGEMENT
CAIS-PROCESS&DEFINIT[ONS
CAIS-ACCESS-.CONTROL.
MANAGEMENT

CA1SJQ..DEFINITIONS CALR.STANDARD None
CAIS-DEFINITIONS
CAIS-.LISTJVIANAGEMENT

CAISJO..ATTRIBUTES CAIS-.STANDARD None
CAIS-DEFINITIONS
CAIS-O.0-DEFINITIONS

CAIS-DIRECT-J0 (GENERIC) CAIS..SIANDARI) Self
CAIS-DEFINITIONS
CAS-10-DEFINMTONS
CALSJJISTMANAGEMENT
CALS-ACCESS...CNTROL.
MANAGEMENT

CAIS-SEQUENTIAL-10 (GEN- CAKSSTANDARD Self
ERIC) CI-EIIIN

CAISLDEFINITIONS

CALS-LIST..MANAGEMENT
CAL.ACCESS&CONTR3L-

_____ ____ ____ ___ I MANAGEMENT _ _ _ _ _ _ _

Table 8
SWG CAIS Package Dependencies (Concluded)

Package Name Dependent on Package Contains/Exports Pack-
________________________________ _________________________ are

CAIS-TEXT-10 (GENERIC) CAIS..STANDARD Self, INTEGER..4O,
CAIS-DEFINITIONS FLOAT-1O, FI)CED-1O,
CAISUO..DEFINITIONS ENUMERATION-JO
CAIS-LIST-MANAGEMENT
CAIS-ACCESS&CONTROL-
MANAGEMENT

CAIS-QUEUE-i4ANAGEMENT CAL&STANDARD None
CMS-DEFINITIONS
CAIS-10-DEFINMTONS
CAIS-LIST..MANAGEMENT
CA1S-.ACCESS-.CONTROL-
MANAGEMENT

CAS-SCROLL-TERMNAL-10 CAIS-STANDARD None
CAIS-DEFZNZTJONS
CAI&JO-DEFINITIONS

CAIS-.PAGE-TERMINALJO CALS-STANDARD None
CAIS-.DEFINITIONS
CAI&IO-.DEFINITIONS

CAIS-JORM-.TERMINALJO CAKSTANDARD None
CAS-.DEFINITMONS
CAIS-10-.DEFINMTONS

CAIS-MAGNETIC-TAPE.JO CAI&STANDARD None
CAIS-DEFINITIONS

CAI&-IMPORT-EXPORT CAS..DEFINITIONS None
CAIS.JJIST..MANAGEMENT

SWG..CAI&OST..TO..TARGET.JO CAISTANDARD None
CAI&LIST-.MANAGEMENT

___ ___ ___ ___ ___ __ CAISJO..D FINTINS I _ _ _ __ _ _

12

tes-ter's aid the iml)iementor's interpretation of the specification. etc. In general. the I-ester

%iII provi(le the human interface to the test environment.

2.2.2 Reuse Existing Technology

Several technologies currently exist that can be incorporated to varying degrees into the
S\V ('AIS test environment specified in Section 3. The available technologies are preseinted

here along with the strategy adopted for their reuse in the test environment. Appendix B lists
the DOD-STD-1838 interfaces, identifies which interfaces have corresponding test software.
and identifies the source for this test software.

2.2.2.1 ACVC Tests. As part of the specification of the Ada language (ANSI,'MIL-
STD-ISI.*A. 1983). several packages are identified as predefined library packages of any Ada
compilation system. II conjunction with the development of the Ada language. all Ada
(' mpiler Validation ('apability (AC.VC) has been developed and is used to ensure complian'e
to the Ada language standard by a given vendor (ACVC User's Guide. Version 1.9). 'J'lh
AC'(' includes tests for each of the predefined packages. A parallel exists between several of
these predefined packages and a subset of the S\\(; CAIS packages. These packages are:
TEXTJO, DIRECTIO, SEQUENTIAL-tO, and CALENDAR. The equivalent S\\G CAIS
packages either require compliance with the Ada standard for a given interface. identify a
variation on the required functionality, or specify additional interfaces to Ibe supported (See
Table 4 for a comparison of the predefined Ada language standard input/output (I/O)
packages and the S\,'G CAIS (1/O) packages. The package CALENDAR is virtually the same
for both).

The ACVC tests for those Ada interfaces that are equivalent to SVG CAlS interfaces
will be considered a sufficient test set for the SVG CAIS interfaces and will be incorporated
into the test suite. For those SWG CAIS interfaces that replace the Ada language standard
interfaces, a study of the available test software will l)e made. Reuse of these tests will he
determined on a test by test basis. Those interfaces that are new to the S\VG CAIS will. of
course, require the development of new tests.

2.2.2.2 CAIS Prototype Tests. Several prototypes of the January, 198.5 version of
the CAIS (Proposed, MIL-STD-CAIS) have been developed, along with some validation
software. Test software from the following two prototypes is available for reuse: all in-house
MITRE implementation (Study of the Common APSE Interface Set (CAIS), 1985) and a CAIS
Operational Definition (CAISOD), (CAISOD, 1986).

Note that the current CAIS standard (DOD-STD-1838) does not directly map to the
January, 1985 version; packages have changed in both content and syntax, and subprograms
have been modified syntactically as well as semantically. In, addition, the SWG CAIS
specification (SWGCAIS, 1987) introduces variations on DOD-STD-1838 based on the needs of
the tool writers as identified in the NATO SWG on APSE Requirements document; some
packages in the SWG CAIS will be subsets of the CAIS standard or will have degenerate
behavior, and an additional package has been added to the SWVG CAIS specification to support
host/target communication. To actually determine the reuse potential for the MIL-STD-CAIS
prototype test software, it will be necesary to analyze the tests with respect. to the overall test
case generation strategy identified for this test environment. If any tests can be reused or

13

7"ab/e 4
SWG CAIS vs. Ada Language Predefined Packages

Ada Stadard CAIS.DIRECT-IO CAIS-SEQUENTAL.-O CAIS-TEXTJO
Funcion .Prmedure
CREATE R R R
OPEN R R R
CLOSE R R R
DELETE N N N
RESET R R R
MODE S S S
NAME N N N
FORM N N N
IS-OPEN S S S
READ S S S
WRITE S S S
SET-INDEX S
INDEX S
SIZE S
END-OF-FILE S S S
SETJNPUT S
SET-OUTPUT S
ST ANDARD.JNPUT - N
STANDARD-OUTPUT N
CURRENTJNPUT - S
CURRENT._OUTPUT - S
SETLINE.LENGTH - S
SETPAGE.LENGTH S
LINE.LENGTH S
PAGE-LENGTH S
NEW-LINE S
SKIP-LINE S
END-OF.LINE S
NEW-PAGE S
SKIP-.PAGE S
END-OF.PAGE S
SETCOL S
SET-LINE S
COL S
LINE S
PAGE S
GET S
PUT S
GET.LINE S
PUT.LINE S
SYNCHRONIZE A A

R w replace N - am-extent ia CAIS
S -miae in both A -added for CAIS

. mat a Ada or CAIS

1,1

modifiel to satisfy a needed test case, the tests will be added to the test suite. Likely
candidates for reuse are those dleveloped for the C'AISLIST2XLANAGEMENT package.

2.2.2.3 CAIS Terminal I/O Tests. A virtual terminal implementation in Ada
along with the documentation and acceptance tests is available in the public domain. This
capability formed the precursor to the three terminal packages currently defined in the CAIS.
The tests have a high degree of reusabilitv, are well documented, and should provide good
coverage of these packages.

2.2.2.4 United Kingdom Evaluation Technology. The UK is contributing tool
evaluation technology as an ERB deliverable to the NATO effort. This technology consists of
a test harness and a test suite that will be used to evaluate individual tool components in the
APSE. The test harness is written in Ada and is available for reuse in this NATO effort. The
[UK test harness will be evaluated for use in the initial test environment.

2.2.3 Staged Testing Capability

The TIRB plans to stage delivery of tools and the SWG CAIS implementations. A
staged development approach will also be adopted for the SWG CAIS test capability. The
initial test environment will focus on testing nominal functionality and will incorporate
reusable existing tests. Later versions of the test environment will add nominal tests for
interfaces that are not covered by any existing tests; and will provide enhancements to the test
execution control and reporting component.

The SWG CAIS developer of the first implementation will provide staged releases of the
S\WG CAIS implementation during the development process. Each SWG CAIS implementation
release will be regression tested. As the test environment is expanded to include additional
tests, these additional tests will be performed against the most recent SWG CAI$
implementation release.

2.3 Review of Installation Guide

The SWG CAIS Installation Guide will be reviewed from three l)erspectives:
completeness, consistency, and correctness. The guide will be used to perform the initial setup
of the SWG CAIS implementation in preparation for the test exercises. Any errors, omissions,
or discrepancies in the Installation Guide will be noted in the final test report.

15

0

16

3.0 Test Environment Requirements

This section defines the technology required to supl)ort the SWO CAIS test strategy.

The primary goal of the SWG CAIS Test Environment is to support tile test of a SWG
CAli implementation as much as possible. When necessary, this includes determining the
extent of a partial implementation of the SWG CAIS and then tailoring the tests to test only
those features implemented. As well, it is necessary to ensure that the SWG CAIS interfaces
function in accordance with the DOD-STD-1838 specification as modified by the SWG. This
technology must permit the construction and execution of a large number of repeatable,
verifiable experiments on the SWG CAIS. Secondary goals for the Test Environment are to
build a tool environment which is portable, flexible. extensible, and robust.

"lhe remainder of this requirements section is organized into three sections, intended to
out lie the requirements for the Test Environment. First, the test, execution control
requirentents are presented in detail. Second, the requirements for the Test Suite are
discusised. Lastly, general design goals are discussed.

3.1 SWG CAIS Test Execution Control Requirements

Several functions are required to support the process of testing the SWG CAIS:
administrative functions outside the actual testing process, management of the large volumes
of' data expected from executing the tests, configuring the test sequences, permitting control
during the execution of the tests, reporting the results of the tests, assessing the extent of the
S\\G CAIS implementation undergoing test, determining the effectiveness of the tests,
ensuring that, differences in host implementations do not interfere with test results., and
communicating with the user efficiently and reliably. Each major requirement is individually
defined in the following sections.

3.1.1 Test Administration

Procedures shall be developed for establishing users, defining and maintaining SWG CAIS
node model instances, and performing other administrative functions.

3.1.2 Test Configuration Management

Procedures shall be established that are capable of cataloging test results, enforcing an
order to the tests for regression testing of a SWG CAIS implementation, and identifying Test
Suite baselines. It should also support dynamic reconfiguration of tests. The tester should be
able to select an individual test or tests for execution outside the context of an integrated test
suite. This allows for user selection of a test execution order that is different from any
predefined order.

3.1.3 Test Invocation

Many tests can be grouped together, such as the CAIS node management tests and the
CAIS list management tests. Tests may be organized into groups which exercise interfaces
from the same CATS package or share the same type of testing approach. Grouping of tests

17

%%iII permit more confi(lence that no relevant tests have been overlooked, as well as decrease
the time neeled to construct a test set and allow the operator to rerun the same exact, group
ol tests. The ability to form logical, hierarchical groups of tests will also be important. since
the order in which tests are executed is critica! !o ensuring that only tested SWG CAIS
interlaces will be usel to test those SWG CAIS interfaces that have not been tested.
Moreover, existing groups of tests (ACVC and prototype CAIS tests) will need to be easily
integrated into the test suite. Groups of tests shall also be saved for future use in a permanent
form. Each group shall have a unique name which can be referenced from the context of
another group of tests. Naming groups and then using the names within the context of
another group is the primary mechanism for forming hierarchical groups.

3.1.4 Run-time Control

The Test lEnvironnent, will be designed to run in batch mode as much as possible.
Interactive input and output will also be supported only where necessary. This will most likely
be needed for testing of the terminal l'O packages.

3.1.5 Implementation Assessment

In addition to testing for the conformance of any SWG CAIS implementation, its extent
(the part of the SWVG CAIS specification which is actually implemented) shall also be
discernible. Determining the extent of the SWG CAIS implementation is most important
during the earlyI phases of SWG CAIS development as it lends itself to a staged
implementation.

3.1.6 Environment Configuration Assessment

It is necessary to determine the exact configuration of the underlying software and
hardware environment. The implementation dependent characteristics of the Ada
development environment must be understood so that they can be taken into account during
testing. Diferent, configurations of the underlying software and hardware may influence the
test results. Some limitations and variations in the architecture and host operating system
which may prevent some tests from reporting correct results are:

* task scheduling algorithm

* representations of data objects

* structure of the file system

* types of terminals and printing devices supported

* available Ada pragmas

* Ada attributes

18

The implementation of the S\\(' ('AIS 'Test Environment will permit multiple user

interlaces, according to the types of devices available.

3.1.7 External Interface Requirements

The Test Environment must. interact with the host hardware and the host software
development environment. The following two sections address these interfaces.

3.1.7.1 Hardware Interfaces. The Test Environment is required to execute on one
of the two hardware configurations specified in the NATO SWG APSE Requirements
docunent.

3.1.7.2 Software Interfaces. Some part.s of the Ada development, and execution
environment nust be present during SWG (AIS testing. The following list is a minimum set,
of resources which must he available for Test Environment execution:

* A validated Ada compilation system

S\V CAIS implementation

3.1.8 Performance Requirements

Two types of performance are applicable to the design of the SWG CAIS Test
Environment: timing and capacity. Timing performance refers to the ability of the system to
execute tests in a timely manner. Capacity refers to the ability of an Ada compilation system
to implement correctly a given number of Ada objects. For example, Ada compilers may have
limitations on the number of enumeration literals supported before they exhaust symbol table
space. The Ada compilation system may have difficulty handling the large numbers of
functions and procedures in the SWG .AIS Test Suite.

Performance is also important during test suite construction. The test suite shall be
designed so that tests can be independently compiled, linked and executed. It shall also be
possible to incrementally add to or modify the test suite with the effort required to build a new
suite localized to the tests being added or changed.

The speed of execution of the Test Environment is a secondary consideration to the more
important issues of complete and reliable testing. Since the SWG CAIS implementation will
likely have the greatest influence on total test time, and since the speed of the SWG CAIS
implementation is not controllable, SWO CAIS tests should be designed to consume as little
time as ixpssible. The tests must also be designed to minimize execution time especially in the
area of user interaction, but it is expected to be a secondary performance issue in the Test
Environment as a whole.

3.2 Test Suite Requirements

The testing of the S\VG CAIS is based on a black-box or functional testing approach.
The goals of this testing effort are to ensure the existence and syntactic correctness of the
SWG CAIS interfaces in a given implementation, and to ensure compliance to the semantic
intent of the specification. The first goal can be met. in a rather straightforward, brute force
manner since the syntax of the interfaces is formally defined through Ada packages. The Ada
compiler will do extensive static syntax checks as well as static semantic checks of the declared
data types. Ensuring conformance to the semantics of the specification is more difficult,
however, since the semantics of the SWG CAIS are not formally specified.

The tests consist of nominal tests which ensure simple or nominal functionality and
completencs., of the interfaces.

The details of the nominal tests are addressed in the ection 3.2.1. Items in the SWG
CA-IS specification which are global to the entire specification are addressed in Section 3.2.2.
Section 3.2.3 specifies conventions to be followed for configuration management of the test
names. The final results will be contained in a report as addre.ssed in the Section 3.2.4.

3.2.1 Nominal Testing

In nominal testing, each "critical" SWG CAIS interface as defined in Table 2 shall be
individually examined at the simplest or nominal level. An interface is a primary interface, an
overload, or an additional interface. Each interface is unique even though some interfaces may
share the same name. Although the focus of an interface test is the test of a particular
interface, the actual test will often require the use of other SWG CAIS interfaces. Use of
additional interfaces will be necessary to establish a SWG CAIS node model instance, to set
the node(s) state, to traverse a part of the node model, to a specific node prior to test
execution, or to ensure correctness of the interface tinder test.. Therefore, the ability to
execute tests for most interfaces will also depend on the success of other interface tests. The
dependencies between interfaces will be dlerived during test generation for the individual
interfaces. There are also dependencies among the SWG CAIS packages as previously
idlentified in Table 4. Both forms of dependency will force a specific ordering of the nominal
tests or force the combining of interface tests.

It is possible to identify sets of SWG CAIS interfaces which, for testing purposes, are
mutually dependent, such as OPEN and IS-OPEN. If identification of a small "core set" of
mutually dependent SWG CAIS interfaces upon which the rest of the SWG CAIS interfaces
depend were possible, then the "core set" of interfaces could be tested by some other means
(either by verification or mathematical proof, for example). The rest of the SWG CAIS
interfaces could then be tested using only previously tested SWG CAIS interfaces. Testing
would then be a process of using only already-tested SWG CAIS interfaces to produce other
tested SWG CAIS interfaces.

However, it is not possible to identify a small "core set" of mutually dependent SWG
CAIS interfaces upon which the rest of the SWG CAIS interfaces depend. This is probably
because an interface set is designed not to be redundant in the first place.

20

Since the Wdentification of a "core set" seems unlikely and requirements exist, for black-
box testing of the SMG CAIS interfaces on two architectures. the process of testing one S\VG
CAIS interface must depend on other S\VG CAIS interfaces to both create the pre-conditions
and evaluate the post-conditions for each test. Testing of the SWG CAIS must then proceed
inductively, assuming for a given test that one set of S\N'G CAIS interfaces is correct, when
using that set to test another SWG CAIS interface.

Nominal tests must show that an implementation behaves as expected under both normal
and exceptional conditions. To ensure this, the tests will set up illegal as well as legal input
conditions to induce both normal and exceptional responses. These tests will examine each
interface with simple test data sets to determine if the interface has been implemented beyond
stubbing and to determine if each exception defined as relevant for that interface can be raised.

It, is beyond the scope of the current test effort to perform exhaustive testing. This type
of testing will determine the thoroughness of the interface implementation by aggressively
attempting to locate errors in the semantics of each interface through more extensive test, data
se ts.

3.2.1.1 Nominal Test Setup. A separate test will be written for each critical
interface. This set of critical interfaces has been defined previously in Table 2. The purpose of
this test is to demonstrate minimal functionality through the use of a set of simple test cases.
Existence tests will check for the correct functioning of an interface using valid parameter
values, and exception tests will check for the SW(G CAIS implementation's ability to raise each
exception.

Each test shall consist of a simple exercise of an interface. Input values will be defined
for each parameter of mode "in" or "in out" as well as the actual node model instance needed
(if any) prior to test execution. Expected values will be defined for each parameter of mode
"in out" or "out" (if any), for each function return value (if any), for the expected exception to
be raised (if any), and for the expected node model instance following test execution (if any).

The existence tests will check for the proper operation of an interface. Any exceptions
raised will indicate that the expected conditions were not met. The exception tests will check
for expected exceptions and expected exceptions that are not raised will indicate that the
expected conditions were not met. The tests will consist of the following steps:

0 Ensure that a correct SWG CAIS node model instance exists prior to execution of
this test. This implies the creation of a SWG CAIS node model instance, the use of
a predefined SWG CAIS node model instance, or the use of a previously generated
node model instance created by a previously executed test. This will require the use
of other SWG CAIS interfaces.

* Execute the interface with the predefined input values.

* Compare the actual profile values with the expected profile values.

21

" Compare the resultant SW.G CAIS node model instance with the expected SWG
CAIS node model instance. This may involve the use of other SWC CAIS
interfaces.

* Compare the actual exception raised (if any) with the expected exception.

3.2.1.2 Nominal Test Success Criteria. A nominal test will be considered
successful if the following criteria are met:

* The test reaches completion. Note that an interface used to establish the
preconditions for this test could raise an exception. The test would then be
considered invalid.

* The expected output profile matches the actual output profile for an existence test.
For an exception test, the actual exception raised matches the expected exception.

* The expected SVG CAIS node model instance matches the actual SWG CAIS node

model instance.

The status returned from each nominal test will be one of the following:

" Pass -- the nominal test was successful according to the stated success criteria.

* Fail/reason -- the nominal test was not successful according to the stated success
criteria. The reason portion of the status will identify which of the criteria was not
met (i.e., SWG CAIS node model instance was not correct, an unexpected exception
was raised, a parameter was not correct, or the interface does not exist).

Note that some exceptions defined in the SWG CAIS cannot be raised directly through
an external testing mechanism. For instance, the exception TOKEN-ERROR cannot be
raised directly since a token is a limited private type that cannot be explicitly provided as
input to a test. Such exceptions cannot and will not be explicitly tested.

3.2.1.3 Predefined Attributes and Relations. The SWG CAIS specification
identifies two forms of predefined information: relations and attributes (See DOD-STD-1838,
Appendix A). Tests shall be defined to ensure that the SWG CAIS implementation supplies
the required predefined information for the critical interfaces. These tests shall be incorporated
into the interface tests.

3.2.2 Test Name Configuration Management

Configuration management of the tests is needed to identify which tests are run against
the SWG CAIS implementation. The suite of SWG CAIS tests is expected to be quite large.
There are over 500 functions and procedures (SWG CAIS interfaces) in the thirty-two
packages comprising DOD-STD-1838. The SWG CAIS has additional interfaces defined in the
package SWGCAISHOSTTARGET-JO. For each interface, a test must be constructed.

22

Since there is a large number of SWG CAIS tests, -oniguration management of the test names
must be rigorous.

The method for generating test names must satisfy several requirements. The objective
of these requirements is to identify the purpose and scope of a SWG CAIS test. Configuration
management of the SWG CAIS Test Suite applies to both the different tests and their
associated files (e.g., input and output files)

The specific requirements for generation of test names are:

The test name shall uniquely identify the interface undergoing test. While several
test c ase names may correspond to one SWCG CAIS interface, in no circumstance
will one test case name correspond to more than one SWG CAIS interface.

* The test names shall be methodically generated such that, identification of the S\WG
CAIS interface being tested and the exact component of that interface being tested
shall be related to DOD-STD-1838 and be simple to look up.

* The test names shall allow for overloaded versions of the same interface.

The test, names shall allow for identification of pragmatics being tested for that set
of global tests defined in section 3.2. These names should also be related to DOD-
STD- 1838.

3.2.3 Reporting Results

The final test report will identify what the tests are supposed to accomplish, and include
any relevant statistics regarding the number and type of tests run. A summary analysis of the
test results will be presented.

3.3 Design Goals

This section describes additional design goals for the Test Environment. Where possible,
the goals of flexibility, extensibility, robustness, and portability should be met.

3.3.1 Flexibility

Flexibility is the ability to change SWG CAIS test suite configurations with a minimum
of delay. Flexibility can be accomplished by establishing and adhering to standards that will
support future efforts in changing software to accommodate changes in requirements relating
to the mission, function or associated data.

3.3.2 Extensibility

Extensibility is the ability to add new tests to the Test Suite at minimum cost.
Extensibility of the Test Suite can be accomplished by establishing and adhering to syntactic
and semantic standards for tests. One form of syntactic standard, the configuration
management of test names, has already been mentioned. The configuration management of

23

test names contril)utes to the overall extensibility as well as maintainability of the Test. Suite
by providing a taxonomy of tests. It makes clear which tests have been written, which tests
are currently needed, and which intended purpose a SWG CAIS test serves.

Each test must set up the node model instance required for the test and verify its pre-
and post- state (see Section 3.2). Therefore, each test can be executed independently of any"
other test. This philosophy supports ease of test suite extensibility.

The ability to extend the Test Environment to support S\VG CAIS implementation
testing should also be considered in its design. For instance, the tests should not preclude the
inclusion and instrumentation of performance measurement functions if needed.

3.3.3 Robustness

Many tests in the Test Suite will raise exceptions. Two types of exceptions will be ra-ised
by these tests; those which are expected to be raised, and those which are not expected to be
raised. Some tests will be written explicitly to observe the correct raising of an exception
defined by the SWG CAIS specification. These exceptions are expected. If an unanticipated
exception is raised in the SWG CAIS under test or if the test has an error which raises the
wrong exception, then the exception will be unexpected.

In dealing with both types of exceptions, one overriding concern is to not have execution
stop because of an exception that was not anticipated in the test's exception handler. Tests
which are likely to raise exceptions shall have exception handlers embedded within them.
Tests which may cause one of several exceptions to be raised shall explicitly handle the
exceptions with relevant exception handlers embedded within their bodies. An unexpected
exception shall also be trapped at the test level and its occurrence reported back.

3.3.4 Portability

Portability is the ability to move a software system from one computer to a dissimilar
computer with few or no changes to the source code. Ideally, recompilation to produce new
object code files and relinking are the only changes required to effect a move to another "Ada
machine." Portability issues must be addressed at three levels: the computer, the host
operating system, and the Ada compiler.

Portability can be achieved by limiting the use of implementation dependent features of
the Ada language and the underlying machine. Some host dependencies will be required, such
as access to the file system to store test results and configurations of tests to be run, but
reliance on such features shall be justified in the design. The results database shall be
portable. Individual tests shall also isolate nonportable features into separate portability
packages. The Test Environment shall be written using Ada constructs that maximize its
portability and minimize the rehosting effort.

24

j

APPENDIX A

Overview of Verification & Validation Techniques

A literature search of verification, validation, and testing techniques was performed as
part, of this effort. This appendix presents a summary of the findings for both the state-of-the-
practice and the state-of-the-art. It is included here for completeness since the cited references
influnced the S\WG CAIS Independent Verification and Validation (IV&V) strategy.

Iti a software levelopment life cycle, verification is the process used to determine
cor rec'tness,. completeness, and consistency in the transformation process from one phase to
the other. Validation, on the other hand, has no regard for the intermediate phases and
iasteal focuses on the degree to which the final product conforms to the original specification
(See (Meyers, 1979); (Adrion et al, 1982); (FIPS-PUB-101, 1983); (Glass, 1979); (Lindquist,
198-.)). The literature search revealed that the techniques available for performing IV&V of
the software development process depend on the degree of formalism introduced into the
solthvare development activities. If the software is specified with a rigorous (mathematical)
notation, a formal approach is said to be used in the development process and hence formal
IV&V techniques can be applied; otherwise, an informal approach has been adopted. In
general the use of formal representations of the software and corresponding validation and
verification based on these representations is the exception rather than the rule in the current
state-of-the-practice. Such formalism is usually only introduced into the development of life-
critical or secure software.

A.1.0 Verification Techniques

In the development of a software system, two levels of verification are necessary:

" design verification --to show consistency, completeness, and correctness between the
requirements and the design.

* code verification - to show consistency, completeness, and correctness between the
implementation and the design.

Techniques that can be employed at each of these verification steps are described here for both
a formal and an informal approach.

A.1.1 Formal Verification Methods

Formal verification "is the process by which mathematical reasoning is used to show a
system satisfies its requirements," (Nyberg et al, 1985). The use of formal verification requires
the use of formal specifications at each stage of development. Formal verification is then used
to evaluate the software at each stage using a consistency proof. This proving technique

25

Ce.lireS correctnes- in the transformation process from one specification level to the next. Use
of such techniques requires highly trained personnel and additional resources above and beyond
(lie niormal development resources. Therefore, such techniques are usually restricted to critical
software such as a secure operating system (Walker et al, 1979).

A.1.2 Informal Verification Methods

If an informal approach has been adopted for the software development, effort, there are
no formal specifications available that rigorously show transformations from the requirements
to the design to the code. Some informal verification techniques have evolved that are
generally referred to as static analysis techniques. The techniques presented here correspond
to the two verification activities of interest in this effort: design and code verification.

The generally accepted method of design verification is to conduct a design review upon
com)letion of' the design and prior to start of coding. Glass in (Glass, 1979) identifies the
Following itenms to be examined in a design review:

* External interfaces

* Internal interfaces

• ('ritical timing requirements

* Overall structure with respect to requirements allocation

* Human-software interactions

In (NlcCabe, 1980), a list, of topics and detailed questions are posed for design review

areas that include:

* System structure -- risk areas, functional dependencies

* Reliability -- areas that will be potentially unreliable

* Unknowns-- user interface, hardware characteristics

* Efficiency -- bottleneck components

* Modularity -- software engineering principles applied

* Hardware -- what effect failures will have on the software

* Algorithms -- complexity, performance

* Overall system concept

26

* Assumptions made -- hardware, user, other software deliveries

" Portability -- separation and degree of system dependent features

" Failure -- accommodation of failure detection/recovery in the design

Somlie combination of these review topics should be assessed for a given design as part of the
design review process.

At the implementation level, two verification activities are normally performed: code
inspections and unit testing. Code inspections are done for each module to ensure adherence to
the design and to the coding standards. (Glass. 1979; Meyers, 1979). These inspections are
performed a.s desk exercises and require a static review of the code prior to execution on the
machine. A code inspection conducted by a developer and attended by an I\ k\:
representative, constitutes an independent verification of the code for correctness, consistency
and conipleteness. Developers normally unit test their software units in a development,
environment. This testing is designed to verify the structural logic of the unit.. The adequacy
oI the ulit testing is then independently verified by examination of the unit test data and

results.

A.2.0 Validation Techniques

The generally accepted approach to validation is to use testing to dynamically analyze
the code with respect to its intended functionality through execution of the implementation in
a test. environment. More specifically, a test suite is developed that exercises the software as
completely and as rigorously as possible from a functional viewpoint; that is, the test, suite
focuses on the external view of the software as seen by the user rather than the internal or
structural perspective. There are three items that need to be addressed in the development of
a test suite: test case generation. test drivers, and test coverage.

A.2.1 Test Case Generation

The key issue in developing a validation capability is the generation of a minimally
complete set of test cases. The completeness of the test cases is usually measured in terms of
structural coverage achieved or through some statistical analysis techniques (See section A.2.4).
A test case is defined to include both a set of inputs as well as the expected output(s). Since
testing is an incomplete process by nature (unless exhaustive testing is performed over every
possible value for each parameter) the subset of tests selected must be chosen in an intelligent,
well-defined manner over the entire set of tests possible.

It is difficult to provide a structured view of test case generation techniques since many of
the techniques can be applied at various testing levels and can be combined into an integrated
strategy. As Beizer points out in (Beizer, 1983), a technique that may be considered a
structural testing technique at one level of testing, may be viewed as a functional testing
technique at another level. In an attempt to segment the discussion, the various techniques are
examined from the degree of formality introduced at the specification level. If a formal
specification of the semantics is available, numerous approaches exist for generating test cases
from these formal semantics. If the specification is informally specified using a natural

27

language. there are ai,,o numerous techniques available, but they are not rigorous and therefore

lend t hemselves less; to automat ion.

A.2.1.1 Artificial Intelligence Approaches

The use of artificial intelligence techniques has been successfully applied in the area of
test case generation. Logic programming has been used in the validation of a set of UNIX
kernel calls (Pesch et al. 1985), In the original specification of the kernel calls, the syntax of
each system function was formally defined. However, the semantic intent of the function was
specified in a natural language form. Rather than develop formal specifications for the system
functions, test specifications were developed using a formal test specification language. Each
test specification consists of two parts: facts about the system call and a set. of test cases
specified hy rules. Each rule consists of a set of preconditions, the system call to be tested and
the value it returns, and a set of post conditions. These test case specifications are then
implemented iII PROLOG.

A.2.1.2 Algebraic Specification Approaches

Another al)proach combines the use of an available algebraic specification and logic
programming techniques for generation of' test cases. This approach assumes the existence of
an algebraic specification that formally defines the semantics of the intended implementation.
These specifications are then used to automatically derive functional test data sets using a logic
programming tool (Bouge et al, 1985). This technique is further refined by using a
constraints-handling Prolog that, limits the number of test data sets generated (Choquet, 1987).

In (Ostrand. 1985) the author advocates "transforming each equation of an algebraic
specification into a procedure whose parameters are the equation's free variables." The
procedure is then supplied with test cases that are executed. If the algebraic equations are
satisfied by the test case parameters. a result, of true is returned; otherwise, a result. of false is
sulpplied.

A.2.1.3 Assertion Testing

Another variant on the use of formal methods for testing software is to specify the
intended behavior of a program via assertions. Assertions are logical expressions that, state
conditions that must be true at. various steps in the program. The assertions are inserted into
the actual implementation and processed into the base language by a preprocessor. These
assertions are then evaluated to. true or false during execution of a test. Two test data
generation techniques that are examined in (Andrews, 1985) for use with assertions are grid
and adaptive test data generation. Grid testing uses knowledge about the range of values that
a parameter can have. This technique uses this information to generate input values for one or
two parameters at fixed incremental points through their respective ranges. Assertion
violations are monitored and reported on post-mortem. In adaptive test generation, the
assertion violations are employed to generate and execute additional test cases. A feedback
loop is used to generate new values for the input variables based on the assertion violations
detected. This level of testing is primarily a structural level testing technique since assertions

28

are intro(luced into the implementation and therefore an understanding of the internal logic is
required.

For an Ada-based development, research is ongoing into the derivation of an assertion-
based annotational language. This language (known as ANNA) augments an Ada package
specification with assertions(Luckham & von Henke. 1984; von Henke et al, 1985). These
assertions describe the intended behavior, or semantics, of the Ada package. The assertions
are introduced as special comments into the package specification and are then preprocessed
into executable Ada code.

A.2.1.4 Cause-effect graphs

Given an informal specification of the semantics of a software component, cause-effect
graphs (MeYers. 1979; Collofello and Ferrara., 1984) can be used to transform the informal
specification into a formal logic network representation. Causes represent input conditions
while effects represent either a system transformation or an output. Causes and effects are
connected using Boolean logic. The resultant graph is then used to derive test cases by
selecting an effect and deriving the input conditions that must be satisfied to produce it.. The
use of these graphs is effective for small units but becomes unwieldy for large systems. One of
the advantages to this technique is that it highlights inconsistencies in the original specification.
A disadvantage is that it is not, effective at, analyzing boundary conditions.

A.2.1.5 Equivalence-class partitioning

Another way to derive test cases is by partitioning each input parameter's possible values
into one or more equivalence classes (Meyers, 1979; CoHofello and Ferrara, 1984). Both valid
and invalid classes are defined. Test cases are then derived by selecting actual values in each
equivalence class such that the maximum number of classes are covered with the minimum
number of tests.

A.2.1.6 Boundary value analysis

It has been shown empirically that test cases that focus on boundary values provide a
better rate of error discovery than those that explore intermediate values. Boundary value
analysis builds on the equivalence partitioning technique. Equivalence partitioning creates
equivalence classes for input parameters only. Boundary value analysis also partitions the
output parameter space, then uses the derived partitions to select values at, above, and below
the upper and lower bounds of each input and output parameter partition (Meyers, 1979;
Collofello and Ferrara, 1985).

The Ada language tests some boundary level conditions itself. This is particularly true for
declared subtypes (MIL-STD-1815A). An object that is defined as a subtype and passed as a
parameter to a subprogram will have its values evaluated at subprogram execution time. Any
attempt to go outside the bounds of the subtype constraints will result in a constraint error at
run-time.

29

A.2.1.7 Random testing

The random test data generation technique attempts to minimize the number of cases
that need to be executed by employing probability distributions to assist in test. case selection.
'Meyers in his now classic book on software testing (Meyers. 1979) disregarded random testing
as a viable technique. New studies (Ince, 1987) challenge this opinion. but the author suggests
more empirical studies are needed before definitive conclusions can be drawn. In any case,
random testing is strictly applicable at the structural test level where some degree of coverage
of the control flow is required.

A.2.2 Test Driver Generation

In addition to techniques available for generating test cases. techniques also exist for
automated test, driver generation. One recent project has developed a niethod for creating test
drivers for Ada packages (Besson and Queyras, 1987)- The work provides a test environment
generator composed of a package level driver, virtual bodies for non-implemented units. and a
command language interpreter for setup and evaluation of test cases. Test drivers are derived
from analysis of the Descriptive Intermediate Attributed Notation for Ada (DIANA)
representation of the package specification. This intermediate form of an Ada program
captures all of the syntactic and semantic intent, of the code. Using this information, the
software builds a test driver for the package that, will execute the subprograms specified in the
package. Since a package can have visibility into other packages through the use of context.
clauses, it is important. to ensure consistency between package test drivers. This test
environment generator ensures that if package specifications have changed, new drivers for
that package and all its dependent packages are automatically generated.

A.2.3 Test Coverage Analysis

Validation test cases are derived from the functional specification and not from any"
knowledge of the structural components of the implementation. To determine how well the
test suite is covering the internal representation of the software requires some form of test
coverage measurement. Several test coverage techniques have been defined that determine
measurement of internal coverage received during execution of the test suite. Coverage
achieved can be measured in terms of control or data, or via an error seeding technique. Each
of these measurement techniques is examined here.

Control flow coverage metrics analyze the coverage acquired over the logical structure of
the software for a given set of test cases. Various measurements are defined for this form of
coverage metric to include: program unit(s) executed, statements within a unit executed,
branches executed, and paths through a unit (Meyers, 1979; Sneecl, 1986; Collofello and
Ferrara, 1984). To produce these metrics, the source is typically instrumented with probes
that are used to maintain counts, identify the decision points exercised and the paths traversed
during a test execution. However, empirical studies of test coverage versus errors detected
(Sneed, 1986) show that such test coverage metrics do not tend to give confidence in the
reliability of the software tested.

30

A more recently cleveloped coverage metric analyzes coverage in terms of the data rather
than the control flow (Sneed, 1986). This measurement technique requires that software
speciticat ions be formally developed based on an assertion method for each data item, fui.et.ion,
andi condlition. These assertions are then used to derive the specified data usage. The
subsequent code is then analyzed to determine the programmed data usage. During test case
execution, actual data usage is determined. Measurements are given that compare actual to
programmed usage. and programmed to specified usage. lnit.ial studies indicate that "by
requiring 90(data coverage twice as many program errors were discovered than with branch
coverage, especially errors of omission and computing error as well as boundry Isic] errors."
(Sneed, 1986).

A final technique introduced by Harlan Mills (Meyers, 1979) is termed error seeding or
"belugging.'" The approach introduces known errors into the sftware, executes the test
softw;,re. anti determines how many of the known errors were detected. Based on the number
of errors discovered, a projection is made ,w to the number of errors remaining. This
technique requires the knowledge of the internal structure of the code.

31

32

APPENDIX B

Available CAIS Validation.SQftware

Table B-1 provides a summary of all the validation software currently available for reuse
in tw S\V CAIS validation effort. The table lists all packages defined in DOD-STD-1838.
For each interface that has corresponding reusable test software, the source of the test
sOft ware is indicated by tie following codes:

" N -- MITRE prototype tests

* C-- CAISOD prototype tests

* A-- ACVC tests

0 V -- Virtual terminal I/O tests

No reusale tests exist for the following packages: access control, process management,
magnetic tape 1/O, and import/export. These packages represent approximately 14% of the
total number of SWG CAIS interfaces. It should be noted that the SWG CAIS specification
only requires that discretionary access control be fully implemented in the access control
package. Mandatory access control must be present with degenerate behavior. The SWG
CAIS also defines a new package, SWGCAIS-HOST-TARGETIO, for which no test
software exists.

33

Tabk B-1
Available CAIS Validation Software

CAIS Snecification Packages vs_ Availadle r
CAIS - DOD-ST'D-1838 Available Tests

5.1.1 Package CAISDEFINITIONS
5.1.2. Package CAIS.NODEL4NAGEMENT

5.1.2.1 OPEN M
5.1.2.2 CLOSE N1
5.1.2.3 CHANGE-INTENT
5.1.2.4 IS-OPEN
5.1.2.5 INTENT
5.1.2.6 KINDOF.NODE
5.1.2.7 OPEN-FILE-HANDLECOUNT
5.1.2.8 PRIMARY-NAME M
5.1.2.9 PRIMARYJ(EY M
5.1.2.10 PRIMARY.RELATION N1
5.1.2.11 PATH-KEY
.5.1.2.12 PATH-RELATION
5.1.2.13 BASE-PATH
5.1.2.14 LAST-RELATION
5.1.2.15 LAST-KEY
5.1.2.16 IS-OBTAINABLE M
5.1.2.17 IS-SAME M
5.1.2.18 INDEX
5.1.2.19 OPEN-PARENT M
5.1.2.20 COPY-NODE M
5.1.2.21 COPY.TREE M
5.1.2.22 RENAME M
5.1.2.23 DELETE-NODE
5.1.2.24 DELETE.TREE M
5.1.2.25 CREATE.SECONDARYRELATIONSHIP
5.1.2.26 DELETE-SECONDARYRELATIONSHIP
5.1.2.27 SET.INHERITANCE
5.1.2.28 ISJNHERITABLE

34

Table 13-1
Available CAIS Validation Software (Continued)

r CA1S Roeifirntin Eaj-a:: I~Aalbe~'~dtc

CAIS - DOD-STD1838 -AvaileTests,

5.2.1MORE
5...2APPROXIMATE-SIZE
.5123 ET-NEXT

51.2.34 SKIP-NEXT
*..1.2.35 NEXT-NAME
5. 1.2.36 DELETEJITERATOR
.5.1.2.37 SEL.QURRENT-NODE
5.1.2.38 GETL.CURRENT-NODE
5-1.2.39 T11IE-CREATED
5. 1.2.40 TIME-RELATIONSH1P-WRITTEN
*..1.2.41 TIME-CONTENTISWRITTEN
..1.2.42 TIE-,kTIRIBUTE-WR1TTEN

.5.1.3. Package C'AIS-ATTRIBUTLM2vANAGEMNENT
.5.1.3.1 CREATE-NODE-ATTRIBUTE M
5.1.3.2 CREATE-.PATH-ATTRIBUTE M
.5.1.3.3 DELETE-NODE-ATTRIBUTE M
5.1.3.4 DELETE-PATH-ATTRIBUTE M
.5.1.3.5 SET.NODE-ATTRIBUTE M
5.1.3.6 SET-PATH-.ATTRIBUTE M
5.1.3.7 GET.NODE..ATTRIBUTTE M
5.1 .3.8 GET-PAT-.ATTRIBUTE 1\
5.1.3.0 Attribute iteration types N/A
.5.1.3.10 CREATE...NODL-ATTRIBUTEJTERATOR M
5.1.3.11 CREATE-PATH..ATTRIBUTEJTERATOR M
5.1.3.12 MORE M
5.1.3.13 APPROXIATE-SIZE
5.1.3.14 NEXT-.NAME
5.1.3.15 CET...NXT..VALUE M
5.1.3.16 SKIP-.NEXT
..1.3.17 DELETEJTERATOR

5.1.4 Package CAIS...ACCESCONTROL-MANACEMENT none
5.1.5 Package CAI.RUCTURAL-NODE-MANAGEMENT

51.1CREATE-NODE M
5.2 CAIS procss nodes N/A

5.2.1 Package CAIS..PROCE.RS4)EFINITIONS N/A
5.2.2 Packaie CAIS..PRQCEa&MANAGEMENT I none

35

Available CAIS Validation Software (Continued)

CAIS Sneifieatnn PakMs y. AwiLhle VidLn Ae
CAIS - DOD-STD-i<38 Available Tests

5.3 CAIS input and output N/A
5.3.1 Package CAIS-DEVICES N/A
5.3.2 Package CAISJODEFINITIONS N/A
5.3.3 Package CAISJOATTRIBUTES none
•5.3.4 Package CAIS-DIRECTJO

5.3.4.1 Definition of types N/A
5.3.4.2 CREATE A
5.3.4.3 OPEN A
5.3.4.4 CLOSE A
5.3.4.5 RESET A
5.3.4.6 SYNCHRONIZE

•* Ada Language Subprogram equivalents **
MODE A
NAME A
FORM A•
IS-OPEN A
READ A
WRITE A
SETINDEX A
INDEX A
SIZE A
ENDOFFILE A

5.3.5 Package CAIS..SEQUENTIAL.O
5.3.5.1 Definition of types N/A
5.3.5.2 CREATE A
5.3.5.3 OPEN A
5.3.5.4 CLOSE A
5.3.5.5 RESET A
5.3.5.6 SYNCHRONIZE

•* Ada Language Subprogram equivalents **

MODE A
NAME A
FORM A
IS-OPEN A
READ A
WRITE A
ENDOFFILE A

36

Table B-1
Available CAIS Validation Software (Continued)

CAI Snecificatlin Paghares vs Available Va idation Softwar
CAIS - DOD-STD-1838 Available Tests

5.3.6 Package CAISTEXT-JO
5.3.6.1 Definition of types N/A
5.3.6.2 CREATE M,A
5.3.6.3 OPEN M,A
5.3.6.4 CLOSE A
5.3.6.5 RESET M,A
5.3.6.6 SYNCHRONIZE

** Ada Language Subprogram equivalents
MODE A
FORM A
ISOPEN A
READ A
WRITE A
END-OF.FILE A
SETINPUT A
SET-OUTPUT A
CURRENT-INPUT A
CURRENT-OUTPUT A
SETLINE.LENGTH A
SETPAGELENGTH A
LINE-LENGTH A
PAGE-LENGTH A
NEWJLINE A
SKIP-LINE A
ENDOF-PAGE A
SET-COL A
SET-LINE A
COL A
LINE A
PAGE A
GET M,A
PUT M,A
GET-LINE A
PUT-LINE A

37

Tuible B-i
Available CAIS Validation Software (Continued)

CAIS Snecificatin Pa'kres va Avai l hle ValidationS Lutar
CAIS - DOD-STD-1838 Available Tests

5.3.7 Package CAIS.QUEUE..LANAGEMENT none
.5.3.8 Package CAISSCROLLTERMINAL-O V
5.3.9 Package CAIS.PAGE-TERMINAL.O V
5.3.10 Package CAIS-FORMTERMINAL-JO V
•5.3.11 Package CAIS..MAGNETIC-TAPE-O none
.5.3.12 Package CAIS-MPORTEXPORT none
5.3.13 Package SWGCAISHOSTTARGET/O none
5.4.1 Package CAIS-LISTMANAGEMENT
5.4.1.1 Types, subtypes, constants, and exceptions N/A
5.4.1.2 COPY-LIST M,C
5.4.1.3 SETTO-EMPTY.LIST
5.4.1.I CON VERTTEXTTO.LIST M
5.4.1.5 TEXT-FORM M
.5.4.1.6 IS..EQUAL M,C
5.4.1.7 DELETE M,C
5.1.1.8 KIND-OF -LIST M,C
5.4.1.9 KINDOF.JTEM M
5.4.1.10 SPLICE M,C
5.4.1.11 CONCATENATE.LJISTS M,C
5.4.1.12 EXTRACT-LIST M,C
5.4.1.13 NUMBER.OF.JTEMS M,C
5.4.1.14 POSITIONOFCURRENT-LIST
.5.4.1.15 CURRENT-.IST.IS-OUTERMOST
5.4.1.16 MAKECONTAININGLIST-CURRENT
5.4.1.17 MAKETHIS.ITENLCURRENT
5.4.1.18 TEXT-LENGTH M,C
5.4.1.19 GET-JTEMNAME M,C
5.4.1.20 POSITIONBY..NAME M
5.4.1.21 Package CAIS-LIST.JTEM
5.4.1.21.1 EXTRACT-VALUE M,C
5.4.1.21.2 REPLACE M
5.4.1.18 INSERT M
5.4.1.19 POSITIONBY-VALUE M
5.4.1.20 Package CAIS.JDENTIFIEIUJTEN
5.4.1.20.1 TO-TOKEN M,C
•5.4.1.20.2 TO-TEXT M,C
•5.4.1.20.3 ISEQUAL M,C
5.4.1.0.4 EXTRACT M,C
•5.4.1.2-0.5 REPLACE M,C
5.4.1.20.6 INSERT M,C

1_ 5.4.1.20.7 POSITION ..BY..VALUE I _M.C

38

Table B-i
Available CAIS Validation Software (Concluded)

CAN~ $rpecificationl Packa.es vs- Available Validation Softwar

CAIS - DOD-STD-1838 Available Tests
5.4.1.21 Package CAIS-INTEGERITEM
5.4.1.21.1 TO-TEXT C
5.4.1.21.2 EXTRACT C
5.4.1.21.3 REPLACE C
5.4.1.21.4 INSERT C
.5.4.1.21.5 POSITIONBYVALUE C

•5.4.1.22 Package CAIS-FLOAT-ITEM
•5.4.1.22.1 TO-TEXT C
5.4.1.22.2 EXTRACT C
5.4.1.22.3 REPLACE C
5.4.1.22.4 INSERT C
5.4.1.22.5 POSITIONBYVALUE C

5.4.1.23 Package CAIS-STRING_4TEM
.5.4.1.23.1 EXTRACT M,C
.5.4.1.23.2 REPLACE M,C
5.4.1.23.3 INSERT M,C
5.4.1.23.4 POSITIONBYVALUE C

5.5 Package CAIS-STANDARD N/A
5.6 Package CAIS-CALENDAR

5.6.1 Definition of types, subtypes and exceptions N/A
.5.6.2 CLOCK A
5.6.3 YEAR A
5.6.4 MONTH A
5.6.5 DAY A
5.6.6 SECONDS A
5.6.7 SPLIT A
5.6.8 TIMEOF A
5.6.9 + A
5.6.10- A
5.6.11 Comparion operators A

5.7 Package CAIS-PRAGMATICS N/A

3g

S4

REFERENCES

"Using the ACVC Tests ." ACVC Version 1.9.

"Ada Programming Language," ANSI/MIL-STD-1815A. Department of Defense, 22 January
1983.

"Guideline for Lifecycle Validation, Verification, and Testing of Computer Software," FIPS-
PUB-101, U.S. Depatment of Commerce/National Bureau of Standards, June 6, 1983.

"Military Standard Common APSE Interface Set, (CAIS)," Proposed MIL-STD-CAIS,
Department of Defense. 31 January 1985.

Ada Programming Support Environments (APSEs) Memorandum of Understanding (MOt7).
NATO, 10 October, 1986.

"Common Ada Programming Support Environment (APSE) Interface Set, (CAIS)," DOD-
STD-1838, Department of Defense, 9 October 1986.

Terms of Reference for the Evaluation Review Board for the Special Working Group on Ada
Programming Support Environments, NATO, December 11, 1986.

Terms of Reference for the Tools and Integration Review Board for the Special Working
Group on Ada Programming Support Environments, NATO, December 11, 1986.

Introduction to the CAS Operational Definition Documentation, Arizona State University,
October, 1986.

"Specifications for the Special Working Group Common Ada programming Support
Environment (APSE) Interface Set (CAIS) Implementations," US-Trondheim-002, NATO, 18
June 1987.

NA TO SIVG APSE Requirements, NATO, 25 August 1987.

Andrews, Dorothy M., "Automation of Assertion Testing: Grid and Adaptive Techniques," in
Proceedings of the Eighteenth Hawaii International Conference on System Sciences, ed.
Sprague, R.H., Jr., vol. 2, pp. 692-9, Western Periodicals Co., Honolulu, HI, USA, 1985.

Beizer, Boris, Software Testing Techniques, Van Nostrand Reinhold Company, 1983.

Benzel, T. V., "Analysis of a Kernel Verification," in Proceedings of the 1984 Symposium on
Security and Privacy, pp. 125-131, IEEE Computer Society Press, 29 April - 2 May, 1984.

41

[Iesson. M.. and Quevras. B., "G'ET: A Test, Environment. Generator for Ada,- in Ada
comipo nent.N.: libraries and tools, Proceedings of the ..4da-Europe International Conference, ed.
Sven 'fafveliii. pp. 237-2-50, Cambridge University Press, 2&28 May 1987.

Booch. Grady, Soft ware Enginieering Components in Ada, 1987.

Bowerman, Rebecca, Gill, Helen, Howell, Charles. Reagan, Tana. and Smith, Thomas,
"Dist ribut Ing the Common APSE (Ada Programming Support. Environment) Interface Set
l(CAIS) .- MITR-86W'V0181, The MITRE Corporation. January 1987. Contract # F19628-
86C-O001

Bowerman. Rebecca E., "Study of the Common APSE Interface Set (CATS)." WP-85W00537,
The MITRE (Corporation, 1 October 198-5.

(Carne %, David .J., "'On The CAIS Imp~lemlentation,"' IDA Memorandum Report MASI,1
Institute For Defense Analyses. June 1988.

('hoque. .N.. -Test Data Generation Using a Prolog with Constraints," in Workshop on
Software Jesting, Ba iff, C'anada, 198-5.

(ollofello. Dr. James S. and Ferrara, Anthony F., "An automated Pascal multiple condition
test coverage tool." in Proceedings COMIPSA1C 84., pp. 20-26, IEEE Computer Society Press,
7-0 November 1984.

(,lass. Robert L., Software Reliability Guidebook, Prentice Hall, 1979.

Hlenke. Friedrich XV. von, Luckham, David, Krieg-Brueckner, Bernd, and Owe, Olaf,
"Semantic Specification of Ada Packages," in Ada in use: Proceedings of the Ada
International Cbonferenace, Paris 14-16 Mlay 1985, edl. Gerald A. Fisher, Jr., vol. V, pp. 185 -
1%., Cambridge University Press, September, October 198-5.

lInce. D. C., "The Automatic Generation of Test Data," The Computer Journal, vol. 30, no. 1,
pp. 6.3-69, February, 1987.

Lindquist, Timothy E., Facemire, Jeff, and Kafura, Dennis, "A Specification Technique for the
Common APSE Interface Set," 84004-R, Computer Science Dept., VPI, April, 1984.

Lindquist, Timothy E., Freedman, Roy S., Abramns, Bernard, and Yelowitz, Larry, "Applying
Semantic Description Techniques to the CAIS," in the Formal Specification and Verification
of Ada, ecl. W. Terry Mayfield, pp. I- I - 1-30, 14-16 May 1986.

Luckham, David and Henke, Friedrich W. von, "An Overview of Anna, A Specification
Language for Ada," Technical Report No. 8"265, Computer Systems Laboratory, Stanford
University, September 1984.

McCabe, Thomas J., Structured Testing, 1980.

42

Mckinley. |Kathivin L. and Schaefer, Carl F., "DIANA Reference Manual." IR-MD-078,
lntermetric.s, Inc.. 5 May 1985. Contract N00014-84-C-2445

Myers. Glenford .1.. The Art of Software Testing. John Wiley & Sons, 1979.

Nbyberg. Karl A.. Hook, Audrey A., and Kramer, Jack F., "The Status of Verification
Technology for the Ada Language," IDA Paper P-1859, Institute for Defense Analyses, July,
1985.

Osterand, T. J.. "The Use of Formal Specifications in Program Testing," in Third
International IWorkshop on Software Specification and Design, pp. 253-2.55, IEEE Computer
Society Pres,. 26-27 August 1985.

Pesch. Ilerbvi-t. Schnupp, Perter, Schaller, Hans, and Spirk, Anton Paul, "Test Case
Generation U.ing Prolog." in Proceedings of the 8th hternational C(Inference on Software
Engineering. pp. 252-258, 28-30 August, 1985.

Sneed, Harry NM., "Data Coverage Measurement in Program Testing," IEEE, pp. 34-40, IEEE
Con1 puter Society Press, 1986.

W.R., Adrion and al, et, "Validation, Verification, and Testing of Computer Software," ACM
Computing Surreys. vol. 14, no. 2, pp. 159-192, ACM, June, 1982.

Walker. B. J.. Kemmerer. R.A., and Popek, G. J., "Specification and Verification of the UCLA
UNIX Security Kernel," in Proceedings of the Seventh Symposium on Operating Systems
Principle.s, pp. 64-65, ACM, New York, USA, 10-12 December, 1979.

Wu, Liqun, Basili, Victor R., and Reed, Karl, "A Structure Coverage Tool for Ada Software
Systems," in Proceedings of the Joint Ada Conference, pp. 294-301., 1987.

43

44

GLOSSARY

A(V(AdIa Compiler Validat ion (apal)111t.\'

AII Ada Integratedl Environment. An Ada Programming Support,
'nivironnient. project funded by the Air F'orce and conltractedl

to Intermetrics Inc.

A-iI'(0 Ada Joint P~rogrami Office. Thme office charged] with thme
scesof the AdIa p)rogramiuntg lanrguage.

A L S Ada, Language System.i An Ad ~a Programming Support
Environent pro ject funded b~y the Army and contracted to
Softecm, Inc.

A PS E Ada Programming Support, Environment. T1he complete set
of Ada develop~menlt tools described by the "Stoneman"
(locument, including the Ada comp~iler, linker, editor,
debugger, etc.

CAIS Common APSE Interface Set. The proposed standard
(DOD-STI)-1838) operating system interfaces for all Ada
p~roject s.

CAISO!) CAlM Operational Definition; a partial implementation of
MIL-STD-CAlS, January 1985.

C-IVCI CA IS Implementation Validation Capability.

CNMS Conversational Monitoring System. A trademark of
International Business NMachines, Inc.

DoI) Department of Defense. The organization which identified
the need for a common, modern, high-order computer
programming language.

DRB Demonstration Review Board. One of four boards established
by the NATO MOU. The main objective of the board is to
coordinate and review the demonstration of an APSE
capability through the use of two weapons systems scenarios,
as the basis for the holistic APSE evaluation.

ERB Evaluation Review Board. One of four boards established by
the NATO MOU. The main objective of the work is to
coordinate and review the specification and development of
methods and tools for the evalu'ation of APSE tools and the
demonstration of this technology, where possible, on the tools
and the SWG CAIS.

IRB Interface Review Board. One of four boards established by
the NATO MOU. The main objective of the board is to
coordinate and review the development of the requirements
and specification of an interface standard for APSEs, based
upon review of the evolutionary interface developments
(including CAIS and PCTE), to be recommended for adoption
and use by NATO and nations.

IV&V Independent Verification and Validation

KAPSE Kernel APSE. The level of an APSE that presents a machine
independent portability interface to an Ada program.

KIT KAPSE Interface Team.

MC68020 A 32-bit microprocessor produced by the Motorola
Corporation.

MMI Man Machine Interface.

46

MOU Memorandum of Understanding. The form which NATO
agreements take.

NATO North Atlantic Treaty Organization.

SWG Special Working Group

SWG CAIS Title given to the specific CAIS implementation being
developed for the NATO effort.

TITIB Tools and Integration Review Board. One of four boards
established by the NATO MOU. The '.main objective of the
work is to coordinate and review the specification,
developmuet and integration of a group of software tools
representative of a usable APSE through their initial
implementation on two distinct computer architectures using
an agreed interface set.

UNIX A widely-used operating system originally developed by Bell
Telephone Laboratories.

VAX Virtual Address eXtension. A trademark of Digital
Equipment Company. The name of a widely-used computer
system from Digital Equipment Company.

VMS Virtual Memory System. A trademark of Digital Equipment
Company. The operating system for a VAX computer.

47

Terms

Ada package A program unit that allows for the specification of a group of
logically related entities. A package normally contains a
specification and a body.

Bebugging The process of intentionally introducing errors into a program
as a means of determining effectiveness of program testing.

Black-box testing A testing approach that examines an implementation from an
external or "black-box" perspective. The test cases are
designed based on the functional specification and do not
make use of any structural or internal knowledge.

Dynamic analysis A validation technique that evaluates a product through
actual execution of it.

Evaluation The process used to quantify the fitness for purpose of an
item in terms of its functionality, usability, performance and
user documentation.

Exception Error or other exceptional situation that arises during the
execution of a program.

Formal specification language A precise language used to convey the semantics or meaning
of a computer program.

Formal verification A process that employs formal mathematical proofs to show
correctness of a specification or implementation with respect
to its predecessor specification.

Functional testing See black-box testing

Grey-box testing A form of testing that blends techniques from both black-box
and white-box testing.

Interface A function or procedure defined in a CAIS package
specification. It provides a tool writer with a standard
mechanism for performing a system level service without
knowledge or access to the underlying system architecture.

48

Metric A quantifiable indication of the state of an entity.

Node Model Instance A particular realization of nodes, relationships and attributes
produced through execution of a set of CAIS interfaces.

Stoneman The requirements document for an APSE; published by the
Department of Defense.

Subprogram A program unit that is executed by a subprogram call. Tie
call can be in either the form of a function or a procedure.

Test c"se generation The process of determining both the inputs to drive a test and
the expected test results.

Test data The set of inputs needed to execute a test.

Test driver A software component that is used to exercise another
software component under test.

Validation The process used to determine the degree of conformance of
an end product to its original specification.

Verification The process used to determine the correctness of each
transformation step in the development process.

White-box testing A class of testing that examines the internal structure of
software.

49

Bso

